ON THE FIRST k MOMENTS OF THE RANDOM COUNT OF A PATTERN IN A MULTISTATE SEQUENCE GENERATED BY A MARKOV SOURCE

نویسنده

  • G. NUEL
چکیده

In this paper we develop an explicit formula that allows us to compute the first k moments of the random count of a pattern in a multistate sequence generated by aMarkov source. We derive efficient algorithms that allow us to deal with any pattern (low or high complexity) in any Markov model (homogeneous or not). We then apply these results to the distribution of DNA patterns in genomic sequences, and we show that moment-based developments (namely Edgeworth’s expansion and Gram–Charlier type-B series) allow us to improve the reliability of common asymptotic approximations, such as Gaussian or Poisson approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source

In this paper, we develop an explicit formula allowing to compute the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source. We derive efficient algorithms allowing to deal both with low or high complexity patterns and either homogeneous or heterogenous Markov models. We then apply these results to the distribution of DNA patterns in genomic se...

متن کامل

On Moments of the Concomitants of Classic Record Values and Nonparametric Upper Bounds for the Mean under the Farlie-Gumbel-Morgenstern Model

In a sequence of random variables, record values are observations that exceed or fall below the current extreme value.Now consider a sequence of pairwise random variables  {(Xi,Yi), i>=1}, when the experimenter is interested in studying just thesequence of records of the first component, the second component associated with a record value of the first one is termed the concomitant of that ...

متن کامل

Waiting Time Distribution for Pattern Occurrence in a Constrained Sequence: an Embedding Markov Chain Approach

In this paper we consider the distribution of a pattern of interest in a binary random (d, k)-sequence generated by a Markov source. Such constrained sequences are frequently encountered in communication systems. Unlike the previous approach based on generating function we have chosen here to use Markov chain embedding techniques. By doing so, we get both previous results (sequence constrained ...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

On Classifications of Random Polynomials

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010